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Abstract

Count Sketch and Count Min Sketch are commonly used for frequency estimation
in a streaming setting. This data structures can also be used for approximating
data by accumulating it. One interesting application of this data structure is ob-
served in field of Machine Learning for feature selection. In this paper, we present
analysis of our proposed data structure called Complementary Count Min Sketch,
which is aimed to use less space and running time without much loss in accuracy
compared to count sketch. We analyzed it for feature selection as well as fre-
quency estimation wherein the elements can be removed as well from the stream.
We analyzed the performance over RCV1 - a high dimensional dataset as well as
a synthetic dataset which gave us flexibility to define dimensions of the dataset,
nature of dataset and tweak it’s sparsity.

1 Introduction

There has been an immense rise in generated data which has led to the era of Big Data. These have
heavily influence how we think, build, and maintain applications. For streams with data arriving at
high rate, algorithms are needed which use as little processing time and space in order to analyze
and provide query response in real time. Count Min Sketch and Count Sketch data structures are
used in such scenarios for frequency estimation and finding most frequently occurring items of the
stream.

In machine learning and statistics, feature selection is a process in which one chooses features which
contribute most to the prediction variable or output. At times feature selection is confused with
dimensionality reduction. It is true that both of these help in reducing the features in a dataset, but
the difference lies in how they approach this problem. Dimensionality reduction reduces the number
of features by creating new features as combinations of existing ones. So all the features are still
present in a way, but the total number of features is reduced. But in feature selection, we either
retain a feature or remove it completely from the dataset. When data is present in low dimensions,
there are many different algorithms available for feature selection. However, when data is present
in high dimensions, the training time for the model increases with the dimensions exponentially.
Feature selection of high dimensional data requires large amount of memory and time. Usually
high dimensional vectors are sparse i.e very few features actually have non-zero values. It is not
difficult to load such sparse high dimensional data in memory as we can ignore the zero elements
and use data structure like dictionary to have the position of feature and its value. The problem arises
with storing and performing operations on dense high dimensional vector. We propose a structures
for feature selection of sparse high dimensional vectors using Complementary Count Min Sketches



(CCMS) along with maintaining heap of the most important features to preserve the interpretability
of features. Previously [[1]] have used Count Sketch (CS) for feature selection. In this work, we are
analyzing the complementary count min sketch.

2 Related Work

Count Sketch was introduced by [2] to find the most frequently occurring item in the data stream.
Count Min Sketch was introduced by [3] to find the approximate count of items occurring in the
stream of data. Both the data structures have a similar design. However, they have different error
guarantees. Count Sketch uses pairwise independent hash functions and sign hash functions for
hashing the features into the sketch (Array like data structure). Count Min Sketch uses only hash
functions. So the total number of hash functions computed while adding an element to count sketch
is twice as compared when the element is added to count min sketch. The estimate of frequency
of element provided by count min sketch is an upper bound of the actual frequency of the element
whereas the estimate of frequency provided by count sketch could be lower or higher than the actual
occurrence of the element. The error estimate for Count Min Sketch is L1 norm of the frequency
vector (approximation sketch) and for Count Median Sketch is L2 norm of frequency vector. By
Cauchy-Schwarz inequality we know that L1 norm is bounded by /n * L2norm where n is the
length of the frequency vector (approximation sketch). However, Count-Min sketch algorithm gives
better average error than the Count Sketches when using constant space. Comparative analysis
of count sketch vs count min sketch motivated us to go ahead and propose variants of sketch for
frequency estimation and its other applications.

We found an interesting application of this sketch for feature selection technique wherein the sketch
is used for compression of feature weights.

Feature selection for high dimensional data is very important as the training time increases expo-
nentially with the dimensions. Due to curse of dimensionality, high dimensional data can easily
overfit regression model and thus requires careful hyperparameter tuning. One of the solution to this
problem is feature hashing [4] which makes working with high dimensional data computationally
feasible, but at the cost of losing the interpretability of features. Consider a 3-gram string “abc*.
With feature hashing, one uses a lossy, random hash function h : strings — {1,2,...R} to map
“abc” to a feature number h(abc) in the range {1,2,...R}. This is extremely convenient because
it enables one to avoid creating a large look-up dictionary. Furthermore, this serves as a dimen-
sionality reduction technique. Unfortunately, this convenience comes at a cost, we lose the identity
of the original features. This is not a viable option if one cares about both feature selection and
interpretability.

Another popular approach by [5] is to use greedy thresholding methods combined with stochastic
gradient descent to prevent the feature vector from becoming too dense and blowing up in memory.
In these methods, the intermediate iterates are regularized at each step, and a full gradient update
is never stored nor computed (since this is memory and computation intensive). However, it is well
known that greedy thresholding can be myopic and can result in poor convergence.

[6]] have introduced a new sub-linear space sketch: the Weight-Median Sketch. This is for learning
compressed linear classifiers over data streams while supporting the efficient recovery of large-
magnitude weights in the model. This enables memory-limited execution of several statistical anal-
yses over streams, including online feature selection, streaming data explanation.

[2] has developed a data structure to capture the features that are most discriminative of one stream
(or class). The Weight-Median Sketch is built on top of the data structure Count-Sketch, but, instead
of sketching counts, it captures sketched gradient updates to the model parameters. The core idea
for performing feature selection is figuring out the most discriminative features from the set of
features. This memory efficient data structure can be used to accumulate the gradients of the high
dimensional feature vector when the model is learning without much loss in approximation. This
can be viewed as dimensionality reduction via random projection. The issue with this approach is



we loose the interpretability of the features. Once we accumulate the gradients in count sketch for
high dimensional data, it is not possible to decipher the discriminating feature as different features
would hash at same index in the sketch and will loose the interpretability.

[L] have implemented a method to maintain the interpretability of the features using the Weight-
Median sketch and maintaining a heap of most discriminating features. This method accurately and
efficiently performs feature selection on real-world, large-scale datasets with billions of dimensions.

We will be leveraging this methodology to maintain the interpretability of features. We propose
using our variants of sketch to maintain weights which would use less space compared to Weight
median sketch built on count sketch.

3 Methodology

Here we are presenting the methods and algorithms which we used for our study.

3.1 Zipfian Distribution and Power Law Distribution

Many real data distributions such as sizes of cities, word frequencies, citations of papers, web page
access frequencies, and file transfer size and duration are often characterized by the Zipfian, Pareto,
or Power-law distributions which only differ by the choice of parameters. The zipfian distribution
with parameter a > 0 is a discrete distribution stating that the k*" largest frequency f has a fre-
quency proportional to £~“. We can see, a = 0 generates a uniform distribution whereas the larger
« the more skewed the distribution gets. Zipfian law is cumulative form of Power law distribu-
tion. Zipfian and Power law distributions are especially interesting with regards to the heavy hitters
problem since this problem looks for frequencies which are significantly larger than the rest of the
data. For increasingly skewed zipfian distributions the elements with such frequencies become more
frequent, since only a few of the overall frequencies account for more of the total frequency.

3.2 Count Min Sketch

The Count Min Sketch (CMS) is a randomized method closely related to bloom filters. The count
min sketch data structure can only be used when A is positive. Count Min Sketch has d random
pairwise independent hash functions %;j € {1,2, ....,d} to map the vector’s components to bins w.
h; +{1,2,...,p} = {1,2,3,...,w}. Every component i is hashed into bin S(j, h;(7)). The count-
min-sketch supports two operations: UPDATE(item i, increment A). The update operation updates
the sketch with any observed increment. For an increment A to an item i, the sketch is updated by
adding A to the cell S(j,h;(4))Vj € {1,2,...,d}. The QUERY operation returns the estimate for
component i, the min of all the d different associated counters.

Algorithm 1: Count Min Sketch

v universal hash functions h;
Initialize count-min-sketch matrix S € RV% =0

Update(item i, increment: A)
Update component i with update A
S(4,hi(i)) =S4, hj(i) + A Vje{l..d}

Query (item i):
Query Sketch for an estimate for item i
return Min(S; 1, (i)

for any item i, when we query its value from Count Min Sketch, it will always give an overestimate
of its value as other item also can map to the same position in count min sketch.
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where N is all items in stream. Using Markov inequality we can say:

ex N
K

F(@) < Silh; (0)] < F(0) +

where K is Heavy Hitters Count and ¢ is error rate. So in this way we can say that count min sketch
can be used to approximate frequency of every item i in a stream up to error <* with probability
>1—6in O(log($)%) space and time O(log 6~') where § is failure probability.

For frequency estimation of heavy hitters under stream settings, we can use A = 1 in algorithm ]

3.3 Count Median Sketch (Count Sketch)

The algorithm uses d random hash functions similar to count-min sketch but it also uses d ran-
dom sign functions as well to map the components of vectors randomly to {+1,—1} i.e. s; :
{1,2,..,n} — {+1,—1}. The count-sketch (CS) also similarly supports two operations, UP-
DATE(item i, update §) and QUERY (item i). The UPDATE operation updates the sketch with any
observed update. It may be increment as well as decrement. For an update A to an item i, the sketch
is updated by adding s; (¢) A to the cell S(j, h;(¢))Vj € {1,2, ..., d}. The QUERY operation returns
an estimate for component i, the median of all the d different associated counters.

Algorithm 2: Count Median Sketch

v universal hash functions h;

v random sign functions s;

Initialize count-sketch tensor S € R""* = 0

Update(item i, update: A)
Update component i with update A
S(hy(0)) = S(. hy(i))+s;()A V) € {1...d}

Query(item i):
Query Sketch for an estimate for item i
return Median(S; 5, 1)5;(7)))

Let us analyze the Count Median Sketch: Let us assume the possible different items coming into the
stream will be M. Let us define an indicator function

o [1 iR = hG)
Jj — .
0, otherwise

Approximate value of item j:
fi= = s(3) * S[h(5)]
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Since s is pairwise independent and is independent of Y; which is solely function of h, for j # j*,
we have:
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As fori # j, since s is pairwise independent and independent of h, E[s(¢)s(j)Y;Y;] = 0. Therefore
the only terms in the variance that are survive are when i =j.
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By Chebyshev Inequality:
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The query has a running time proportional to the depth of the sketch. As for the update procedure
of Count-Median Sketch, two invocations of a hash function, a multiplication, and an addition is
required at each row. All these operations are constant and add up to O(d) time. The median of
the d estimates must be found, which can be done in linear O(d) time, yielding a total of O(d) =
O(In §—1) running time for the point query overall.



3.4 Comparison of Count Min and Count Sketch

The Count-Median Sketch provides a better guarantee, since it guarantees that v; is within an addi-
tive factor of ¢||v||2 of the true frequency vi with probability 1 — §. This guarantee is significantly
stronger in most cases as ||v||a < [|v||1. The cost of this guarantee is significantly larger, since
the Count-Median Sketch requires O(log(%)%) in comparison to count min sketch which takes
O(log(%) %) space to support updates and queries in the same time as Count-Min Sketch.

If we compare the precision of the two sketches, it is observed that for data with a near uniform
distribution, the Count-Median Sketch provides smaller errors, whereas when the data becomes
more and more skewed, the Count-Min Sketch provides the smallest error. This is not surprising
since the Count-Median Sketch still has a relationship with the L2-norm, which increases when the
data becomes more skewed implying that the error increases as well.

Under equal space constraint, The precision of the Count-Median Sketch is also expected to change
drastically, due to the decrease in space usage. In fact it is expected that the decrease in space implies
that the error guarantee now is bounded according to the L.1-norm instead of the L2-norm according
to [[7]. So Count-Median Sketch can in fact be shown to provide an error guarantee according to the
L1-norm, by changing the width to be equal to the width of a Count-Min Sketch.

Summing it up, we can say that the Count-Min Sketch and the Count-Median Sketch with width
w = O(e~ 1) is indeed comparable, and that comparing the sketches according to space, precision
and running times gives very similar results, where different data distributions determines which
sketch performs the best. The only notable difference is in the running time of the query algorithms
where the Count-Min Sketch in general seems to be faster than the Count-Median Sketch. It is likely
due to calculating the minimum compared to calculating the median is faster and easier operation.
This is where the motivation came for us to come up with a data structure inspired from count min
sketch for accumulation of gradients.

3.5 Complementary Count Min Sketch

Count min sketch doesn’t support reducing frequency or removing an item in a stream of updates.
As if we decrement the frequency the error bound will not hold which states that the frequency
estimated by count min would be equal or would be an overestimate of the true frequency. However,
Count Sketch supports reducing frequency or removing an item and also holds the error bounds
as it gives the estimate as an median. As we discussed in that count min sketch is faster in
comparison to count sketch and with equal space bound count sketch and count min sketch both
provides error within L1-norm bound. To support negative updates in count min sketch we proposed
this novel data structure - Complementary Count Min Sketch (CCMS). In Complementary (positive
and negative) Count Min Sketch, we will have two sketches SP°® and S™¢Y which will accumulate
the positive and negative updates respectively. So for UPDATE(item i, update A), we will first
check if A is positive or negative. If A is positive then will update it in SP°°, the same way we
did in Count Min Sketch’s update method. If A is negative then we will update the absolute value
of A in S™9. For QUERY((item i), we will query the item in SP°® and S™°9 and will return the
mianp"s [], hj (’L)] - mian”eg [], hj (’L)]

Let us do the Mathematical Analysis of Complementary Count Min Sketch: From Count Min Sketch
analysis we know: For Single Count Min Sketch
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Where f;(x) is actual value of itemiand 3, ;.. ()=, ;) f (¥) is error in estimating value for item
i. Similarly:
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Algorithm 3: Complementary Count Min Sketch

v universal hash functions h;
Initialize positive count-min-sketch matrix SP°% € RV = (, negative count-min-sketch matrix
S8 e RV =0

Update (item i, update: A)
Update component i with update A

if A > 0 then

| SPos (4, hj(i)) = SPes(4, k(i) + A Vi € {1...d}
else

‘ Sn,eg(j’ hj(l)) _ S'neg(j7 hj(z)) + abS(A) V] S {1d}
end

Query (item i):

Query Sketch for an estimate for item i
. pOs . neg

return Mm(Sj)hj(i)) - Mm(Sj)hj (i))

Where f;(x) is actual value of itemiand 3, ;). (). (;) f(¥) is error in estimating value for item
i. '

SP (0] = fie)+ Y f()

y#ith;(y)=h; ()

Where fz(x) is a}ctual value of itemiand 3, ..,y ;) f () is error in estimating value for item
i from negative items of stream.

For Complementary Count Min Sketch:

Elg(@)] = E[f** @)+ Y )] - E[f"00) + > fro )]
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Here y and ' are hash functions for positive and negative sketch. g(z) is true estimate of particular
item.
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So upper bound for the error will be:

1 0S 1 0S /
= UpperBound = WE[ | Z | fro(y)] + mE[ Z | 1P (y")]
y#ith; (y)=h; (i) y#y' #ith; (y)=h; (i)
So lower bound for the error will be:
= LowerBound = iE[ Z 19 (y)] + ¥E[ Z e (y)]
m? m(m —1)

y#ish; (y)=h; (i) y#y' #ih; (y)=h; (i)

We observe the error is bounded between error from negative count min sketch to positive count min
sketch. Thus the estimated frequency can be lower as well as greater then true frequency. However,
If there are proportionate amount of negative and positive updates these error terms will cancel out
each other and would be close to the true estimate.

3.5.1 Variants of Complementary Count Min Sketch

Complementary Count Min Sketch with Different Hash Functions:

In the previously proposed complementary count min sketch, we used same hash functions for pos-
itive as well as negative count min sketch meaning positive and negative updates will have same
positions in sketches. Thus, if hash of two particular items are colliding with each other then they
will collide in both the sketches. We tried to analyze if we have different hash functions for positive
and negative count min sketches, would it help us to minimize the error. Algorithm is described here

Algorithm 4: Complementary Count Min Sketch using different Hash Functions

v universal hash functions 1%”%, h7{? for positive and negative count min sketches

Initialize positive count-min-sketch matrix SP°* € RV = 0
Initialize negative count-min-sketch matrix S € R** =0

Update (item i, update: A)
Update component i with update A

if A > 0 then
‘ SPos (4, hﬁ.’os(i)) = SPos(j, hfos(i)) + A Vje{l.d}
else
‘ Sned(j, h;-wg(i)) = S"e9(y, h?eg(z’)) + abs(A) Vj e {1...d}
end
Query (item i):

Query Sketch for an estimate for item i
. pos : neg
return Mln(Sj, hros (i)) - Mm(Sj’ N )

0

Complementary Count Min Sketch with Single Hash Function:

We realized that the previous approach is quite similar to having a single count min sketch where in
we use different hash functions for positive and negative updates. This is synonymous to using one
count min sketch where we update the positive one as usual and for the negative we get the hash of
negative number and update at that position. Algorithm is described here[5]

Conservative Complementary Count Min Sketch:
As we studied in our last semester, count min sketch with conservative updates gives more accurate



Algorithm 5: Complementary Count Min Sketch using Single Count Min Sketch

v universal hash functions h;
Initialize count-min-sketch matrix S € R""* =0

Update (item i, update: A)
Update component i with update A

if A > 0 then
| SGhi(0) = S3hi(0) + A V) € {1...d)
else
end
Query (item i):

Query Sketch for an estimate for item i
return Min(S(j, h; (7)) - Min(Sj, h;(—1)) Vj € {1...d}

and lower bounds on error. In standard count min sketch, the update operation updates the sketch
with any observed increment. For an increment A to an item i, the sketch is updated by adding A to
the cell S(j,h;(i))Vj € {1,2,...,d}. In this variant, instead of incrementing each counter, we first
compute M = minjec1,.q4yS(j, h;(i)). Then we only increment S(j, h;(i)) if S(j, h;(i)) = M.
We follow this technique for both positive and negative count min sketch. Query method remains

same to the standard count min sketch method. Algorithm is described here[6]

Algorithm 6: Conservative Complementary Count Min Sketch

v universal hash functions h;
Initialize positive count-min-sketch matrix SP°* € RV = 0
Initialize negative count-min-sketch matrix S € R** =0

Update (item i, update: A)
Update component i with update A
Compute M = minc,.qyS(J, hj())
if A > 0 then

| SPo(j,h;(i)) = SP°(4,h;(i)) + A Vj e {1..d} st S(j,h;(i)) =M
else

| S™9(j,h;(i)) = S™9(j,h;(i)) + abs(A) Vj € {1...d} s.t. S(j,h;(1)) =M
end

Query (item i):

Query Sketch for an estimate for item i
. POS . neg

return Mm(Sj,hj(i)) - Mm(Sj,hj (i))

3.6 Feature selection techniques

3.6.1 Feature selection Using Sketches

Consider the feature selection problem in the high dimensional setting where we are given a dataset
(Xi,y;) for i € [n]. Each data point X; € RP and label y; € R. We are interested in finding the
k-sparse feature vector 8 € RP from below optimization problem which solves our feature selection

task where k non zero elements are the selected features.

miny g lo=klly — X B2



Where X = [X7; Xo;:::; X, ] and y = [y1; yo; ::3; yn ) denote the data matrix and label vector and [,
norm ||5||o denotes the number of non zero entries in ||5]|o.

We are interested in solving the feature selection problem for high-dimensional datasets where the
number of features p is so large that a dense vector (or matrix) of size p cannot be stored explicitly in
memory. Sketch data structures allow us to accumulate the gradients updates over several iterations
because of linear aggregation. We will be using the same algorithm as described in [1]. Our novel
contribution is to use above described sketch variants instead of Count Sketch. First, we initialize
the Sketch S and the feature vector 3= with zeros entries. The sketch hashes a p-dimensional
vector into O(log2 p) buckets as ﬁg. At iteration t, this algorithm selects a random row X; from
the data matrix X and computes the stochastic gradient update term using the learning rate A. For
logistic regression, the gradient of softmax function can be defined as g; = A * (y; — X;8Y)X;.
As the data vector X; and the corresponding stochastic gradient term are sparse, we only add the
non-zero entries of the stochastic gradient term {g;; : Vj g;; > 0} to the Count-Sketch S. After
adding the non-zero entry to the sketch, we perform query operation for those items and insert it
into the heap structure - top k if the absolute value from query operation output is greater than
the minimum absolute value in heap along with feature position. In gist, we are maintaining the
most discriminating features (ones with high absolute weights) in Top-K. This structure is solely
responsible for maintaining the interpretability of the features. After performing this stochastic
gradient update step for all the examples and performing the described operation. Finally, we query
the Top-K values of the sketch as the final output. This is detailed in Algorithm 7]

Query elements from
Top-K heap

Adding gradient
Stochastic Gradient Descent to Count Sketch

9= M = Xi+ )T 2 X; —‘

Count Sketch (CS)

Hash 1 -

Hash 2

Hash 3

Figure 1: Schematic of Algorithm

Algorithm 7: Feature Selection: Using Sketch
Result: The top-k heavy-hitters from the Sketch
Initialize: 3° = 0, S (Sketch), A(learning rate)
while not stopping criteria do
Find the gradient update g; = A(y; — X; 897 X;
Add the gradient update to the sketch g; — S
Get the top-k heavy hitters from the sketch 371 + §
end

3.6.2 Greedy Thresholding

In the feature selection algorithms, the class of hard thresholding algorithms have the smallest mem-
ory footprint. Hard thresholding algorithms retain only the top-k values and indices of the entire
feature vector using O(k log(p)) memory. An algorithm where, after each gradient update, a hard
threshold is applied to the features. Only the top-k features are kept active, while the rest are set to
zero. This algorithm generates the following iterates for the i*" variable in an stochastic gradient
descent (SGD) framework.

B Hi(B" — 2M\(y; — XiB")T X))
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The sparsity of the feature vector B?, enforced by the hard thresholding operator H*, alleviates
the need to store a vector of size O(p) in the memory in order to keep track of the changes of
the features over the iterates. As in this algorithm, we only retains the top-k elements of 3, the
hard thresholding procedure greedily discards the information of the non top-k coordinates from the
previous iteration. In particular, it clips off coordinates that might add to the support set in later
iterations. This drastically affects the performance of hard thresholding algorithms, especially in
real-world scenarios where by the design matrix X is not random, normalized, or well-conditioned.
In this scenario, the gradient terms corresponding to the true support typically arrive in lagging order
and are prematurely clipped in early iterations by H*.

3.6.3 Logistic Regression with Heap

In this approach we maintain a heap similar to the the heap as we maintained for feature selection
using sketch technique. After each iteration of SGD, we update the heap in order to maintain the
top-k features with high magnitude where % is user defined. This ensures that after each iteration,
we just have weights for k features.

3.7 Top K Recovery

Our aim for feature selection of high dimensional data set is to find most discriminating features i.e
features which have most impact on the true label. In order to do this, we maintain a heap kind of
data structure which maintains fixed size of the high magnitude feature weights and their indexes.
This structure is updated after each update on count sketch i.e when the weight of any feature is
modified. At the end of training, the Top-K heap is used to recover the K-sparse weight vector. The
key idea of recovery lies in that a suitably high dimensional sparse signal can be inferred from very
few linear observations.

4 Dataset

We have used two datasets in our experiment.

41 RCV1

Reuters Corpus Volume I (RCV1) contains over 800,000 manually categorized newswire stories.
This dataset contains the Non-zero values cosine-normalized, log TF-IDF values for each document.
All the features are real and between 0 and 1. RCV1 [8]] dataset is categorized into 4 groups to cap-
ture the major subjects of a story. The 4 groups are Economics(ECAT), Corporate/Industrial( CCAT),
Government/Social(GCAT) and Markets(MCAT). This data was processed and converted into binary
classes where in positive class includes CCAT, ECAT and negative class includes GCAT, MCAT. 1

The statistics of these datasets are summarized in table[l]

Dataset | Dimension | Train Size | Test Size
RCV1 47236 20242 677399

Table 1: Dataset Statistics

As the data set has large number of features, data is represented in dictionary format where the key
is the position of feature and value is the feature value.

For simplicity purpose we chose to implement binary classification using logistic loss. Our proposed
methodologies can be easily extended for multiclass classification.

Thttps://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.htmlrcv1.binary
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4.2 Synthetic Dataset

To analyze the performance of Complementary Count Min Sketch for feature selection and heavy
hitters, the results of RCV1 dataset were not easy to interpret due its high dimensions and lack
of true model parameters. In order to mitigate this, we came up with the idea of generating a
synthetic dataset where we can play with the number of examples, feature dimensions and sparsity
of features. We also generated the true feature weights and calculated the true labels based on it.
Knowing true model parameters was a major advantage of working with synthetic dataset. This
helped us to analyze the behaviour of sketch and top-k heap at any stage easily. We created dataset
using Gaussian distribution as well as with power law distribution with by inducing sparsity as per
choice.

4.2.1 Synthetic Dataset using Gaussian Distribution

As we saw in section 3.4]that under uniform distribution count sketch has smaller error in estimation
of frequency in comparison to count min sketch. We wanted to verify this for our data structure. We
created the dataset matrix using standard Gaussian distribution. We randomly selected the important
features and generated random weights and based on these data points and feature weight assigned
labels to each example. We experimented with different dataset sparsity level as well as feature
sparsity levels.

4.2.2 Synthetic Dataset using Power Law Distribution

As we saw in section @] for skewed distributions like Power Law and Zipfian, count min sketch
should provide smallest error. To understand the performance of our novel data structure we gener-
ated the synthetic data examples under power law distribution. We used multiple values of o = 2,3
and selected minimum value of k=1 and maximum value of k= number of features. We experimented
with different dataset sparsity levels and feature sparsity levels to understand the performance of our
data structure in comparison to other sketch variants for heavy hitters as well as feature selection
task.

S Experiments and Results

5.1 Analyzing Gradient Updates

Complementary Count Min Sketch will give least error when the error in positive and negative count
min sketch negate each other. Since our experiments with RCV1 and KDD dataset performed well
with CCMS data structure, we believed this was due to negation of the sketch errors. So we decided
to analyze the gradient updates of each dimension of the feature vector. We performed comparative
analysis of gradient updates for different approaches of feature selection using all the variants (in-
cluding CCMS, conservative CCMS, CS, logistic regression, and standard logistic regression with
top-k) to understand how gradient updates are being store and how top-k is changing over time.

In figure 5] we present few samples for gradient updates. Analyzing these sample gradient updates,
we observe that feature 13 and feature 29 are behaving completely opposite. Where in feature 13,
number of gradient updates of count sketch are lesser in comparison to standard logistic regression
method, in feature 29 number of updates are more for count sketch. If we analyze feature 25,
gradients fluctuations have higher magnitudes for count sketches in comparison to logistic regression
updates but number of updates in logistic regression are way highers then number of updates in count
sketch. To sum up, we can say we didn’t find any specific pattern in gradient updates to conclude
anything.
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Figure 2: Gradient updates for feature 13
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Figure 3: Gradient updates for feature 25
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Figure 4: Gradient updates for feature 29

Figure 5: In these gradient updates, first column belongs to CCMS, second column belongs to
complementary CCMS, third column belongs to CS, forth column belong to logistic regression and
fifth belongs to logistic regression with heap

5.2 Performance of Datasets for feature selection
We performed experiments using different feature selection techniques for both RCV1 dataset and
synthetic dataset.

RCV1 Dataset follows power law. The results of RCV1 dataset with top K = 8000 are summarised
in the table below:

Num Total T9tal
Sketch Size Time | Accuracy
Hash Fun. Space

(Sec.)

Logistic I 47236 | 47236 97.65%
Regression
Logistic
Regression with 1 47236 47236 97.64%
Heap
CS 3 19000 57000 | 45.53 | 95.33%
CCMS 2 14000 56000 | 34.42 | 95.36%
Conservative

CCMS 2 14000 56000 | 44.84 | 94.98%
Greedy Thresholding 1 47236 47236 81.94%

Table 2: Results for RCV1 Dataset

We have approximately allocated equal space to all the sketches. We observe that accuracy of logistic
regression outperforms all of them. All the sketches nearly give same accuracy. The time taken by
CCMS is relatively less compared to the other sketches which is as expected.
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Num Sketch | Total
Hash . Accuracy
Size Space
Func
Logistic 1 | 10000 | 10000 | 91.32%
Regression
Logistic
Regression with 1 10000 | 10000 | 92.45%
Heap
CS 3 2000 6000 78.55%
CCMS 2 1500 6000 74.77%
Conservative
CCMS 2 1500 6000 74.41%
Greedy
Thresholding 1 10000 | 10000 | 74.42%

Table 3: Results for Gaussian Synthetic Dataset

Above are the summarised results for synthetic Gaussian dataset with top K = 100. As expected,
the standard logistic regression outperforms as we do not compress any gradients. We observed all
other approaches nearly perform similarly. We haven’t stated number of most important features
recovered as all the methods perform poorly when we consider a Gaussian dataset.

Num Sketch | Total Positions
Hash . Accuracy
Size Space Recovered
Func
Logistic 1| 10000 | 10000 | 87.5% 80
Regression
Logistic
Regression with 1 10000 | 10000 | 86.35% 80
Heap
CS 3 2000 6000 87.80% 80
CCMS 2 1500 6000 87% 80
Conservative
CCMS 2 1500 6000 88.67% 80
Greedy
Thresholding 1 10000 | 10000 | 54.74% 80

Table 4: Results for Power Law Synthetic Dataset

From the summarised results for synthetic power law following dataset with top K = 100. We
observed all approaches nearly perform similarly except greedy thresholding. All approaches are
able to require the true important features.

5.3 Comparing Top-K Heap for various sketches

For RCV1 dataset, we were not aware of true parameters of the model and were clueless what should
be right baseline to compare with. So we decided to compare the most important features obtained
from each technique. Here we observed something very strange, the match in most important fea-
tures varied a lot for each technique used. These results made us pivot towards experiments with
synthetic dataset.

Also, we analyzed the magnitude of updates for most impacting features which vary a lot. We
notice the range of weights for CCMS is much wider compared to cs. We can say range of weights
of CCMS is closer to the range given by logistic regression.
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Logistic Logistic Count Sketch Complementary Conservative
Regression Regression Count Sketch Complementary
with Top K Count Sketch
Logistic 100 90.45 52.45 27.78 48.31
Regression
Logistic 90.45 100 55.81 28.63 51.81
Regression with
Top K
Count Sketch 52.45 55.81 100 29.47 55.72
Complementary |27.78 26.83 29.47 100 29.35
Count Sketch
Conservative 48.31 51.81 55.72 29.35 100
Complementary
Count Sketch

Figure 6: Top K Overlap for all feature selection methods over RCV1 Dataset

Minimum weights:

Logistic Logistic Count Sketch Complementary | Conservative

Regression Regression with Count Sketch Complementary
Top K Count Sketch

-35.90 -36.10 -5.75 -20.27 -6.18

Maximum weights:

Logistic Logistic Count Sketch Complementary | Conservative

Regression Regression with Count Sketch Complementary
Top K Count Sketch

21.32 21.48 -9.10 11.29 11.48

Figure 7: Maximum and Minimum weights for all feature selection methods over RCV1 Dataset

5.4 Frequency estimation

To estimate frequency we created a synthetic dataset with followed power law distribution with
varying «.. The dataset included positive and negative numbers where negative number indicated
deletion of the particular element from the stream. We observed that the error in frequency esti-
mation for frequent hitters using CCMS was decent when the data set was very skewed. Also, we
observe the first proposed CCMS outperforms compared to the CCMS with different hash functions
and CCMS using single sketch 5]

CCMS
alpha CS CCMS using CC.M S
. using
values | loss loss different .
. Single Sketch
hash functions
2 3.27 12.79 13.87 100.17
3 0.025 0.27 0.20 1.84

Table 5: Mean Square Loss for top 30 items from variants of count sketches

15



6

Conclusion

The analysis of complementary count min sketch does not give a better bound than count sketch
in terms of error. However, they have promising results in terms of time taken compared to count
sketch. From the results we observed under same space constraint count sketch and complementary
count min sketch both give same error bound which is L1-norm of true frequency vector when
dataset is very skewed.
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