
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Analysis on Complementary Count Min Sketch

Neeraj Sharma, Kanchi Masalia
Department of Computer Science Engineering

University of Massachusetts Amherst
{neerajsharma, kmasalia}@umass.edu

Abstract

Count Sketch and Count Min Sketch are commonly used for frequency estimation
in a streaming setting. This data structures can also be used for approximating
data by accumulating it. One interesting application of this data structure is ob-
served in field of Machine Learning for feature selection. In this paper, we present
analysis of our proposed data structure called Complementary Count Min Sketch,
which is aimed to use less space and running time without much loss in accuracy
compared to count sketch. We analyzed it for feature selection as well as fre-
quency estimation wherein the elements can be removed as well from the stream.
We analyzed the performance over RCV1 - a high dimensional dataset as well as
a synthetic dataset which gave us flexibility to define dimensions of the dataset,
nature of dataset and tweak it’s sparsity.

1 Introduction

There has been an immense rise in generated data which has led to the era of Big Data. These have
heavily influence how we think, build, and maintain applications. For streams with data arriving at
high rate, algorithms are needed which use as little processing time and space in order to analyze
and provide query response in real time. Count Min Sketch and Count Sketch data structures are
used in such scenarios for frequency estimation and finding most frequently occurring items of the
stream.

In machine learning and statistics, feature selection is a process in which one chooses features which
contribute most to the prediction variable or output. At times feature selection is confused with
dimensionality reduction. It is true that both of these help in reducing the features in a dataset, but
the difference lies in how they approach this problem. Dimensionality reduction reduces the number
of features by creating new features as combinations of existing ones. So all the features are still
present in a way, but the total number of features is reduced. But in feature selection, we either
retain a feature or remove it completely from the dataset. When data is present in low dimensions,
there are many different algorithms available for feature selection. However, when data is present
in high dimensions, the training time for the model increases with the dimensions exponentially.
Feature selection of high dimensional data requires large amount of memory and time. Usually
high dimensional vectors are sparse i.e very few features actually have non-zero values. It is not
difficult to load such sparse high dimensional data in memory as we can ignore the zero elements
and use data structure like dictionary to have the position of feature and its value. The problem arises
with storing and performing operations on dense high dimensional vector. We propose a structures
for feature selection of sparse high dimensional vectors using Complementary Count Min Sketches

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

(CCMS) along with maintaining heap of the most important features to preserve the interpretability
of features. Previously [1] have used Count Sketch (CS) for feature selection. In this work, we are
analyzing the complementary count min sketch.

2 Related Work

Count Sketch was introduced by [2] to find the most frequently occurring item in the data stream.
Count Min Sketch was introduced by [3] to find the approximate count of items occurring in the
stream of data. Both the data structures have a similar design. However, they have different error
guarantees. Count Sketch uses pairwise independent hash functions and sign hash functions for
hashing the features into the sketch (Array like data structure). Count Min Sketch uses only hash
functions. So the total number of hash functions computed while adding an element to count sketch
is twice as compared when the element is added to count min sketch. The estimate of frequency
of element provided by count min sketch is an upper bound of the actual frequency of the element
whereas the estimate of frequency provided by count sketch could be lower or higher than the actual
occurrence of the element. The error estimate for Count Min Sketch is L1 norm of the frequency
vector (approximation sketch) and for Count Median Sketch is L2 norm of frequency vector. By
Cauchy-Schwarz inequality we know that L1 norm is bounded by

√
n ∗ L2norm where n is the

length of the frequency vector (approximation sketch). However, Count-Min sketch algorithm gives
better average error than the Count Sketches when using constant space. Comparative analysis
of count sketch vs count min sketch motivated us to go ahead and propose variants of sketch for
frequency estimation and its other applications.

We found an interesting application of this sketch for feature selection technique wherein the sketch
is used for compression of feature weights.

Feature selection for high dimensional data is very important as the training time increases expo-
nentially with the dimensions. Due to curse of dimensionality, high dimensional data can easily
overfit regression model and thus requires careful hyperparameter tuning. One of the solution to this
problem is feature hashing [4] which makes working with high dimensional data computationally
feasible, but at the cost of losing the interpretability of features. Consider a 3-gram string “abc“.
With feature hashing, one uses a lossy, random hash function h : strings → {1, 2, ...R} to map
“abc“ to a feature number h(abc) in the range {1, 2, ...R}. This is extremely convenient because
it enables one to avoid creating a large look-up dictionary. Furthermore, this serves as a dimen-
sionality reduction technique. Unfortunately, this convenience comes at a cost, we lose the identity
of the original features. This is not a viable option if one cares about both feature selection and
interpretability.

Another popular approach by [5] is to use greedy thresholding methods combined with stochastic
gradient descent to prevent the feature vector from becoming too dense and blowing up in memory.
In these methods, the intermediate iterates are regularized at each step, and a full gradient update
is never stored nor computed (since this is memory and computation intensive). However, it is well
known that greedy thresholding can be myopic and can result in poor convergence.

[6] have introduced a new sub-linear space sketch: the Weight-Median Sketch. This is for learning
compressed linear classifiers over data streams while supporting the efficient recovery of large-
magnitude weights in the model. This enables memory-limited execution of several statistical anal-
yses over streams, including online feature selection, streaming data explanation.

[2] has developed a data structure to capture the features that are most discriminative of one stream
(or class). The Weight-Median Sketch is built on top of the data structure Count-Sketch, but, instead
of sketching counts, it captures sketched gradient updates to the model parameters. The core idea
for performing feature selection is figuring out the most discriminative features from the set of
features. This memory efficient data structure can be used to accumulate the gradients of the high
dimensional feature vector when the model is learning without much loss in approximation. This
can be viewed as dimensionality reduction via random projection. The issue with this approach is

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

we loose the interpretability of the features. Once we accumulate the gradients in count sketch for
high dimensional data, it is not possible to decipher the discriminating feature as different features
would hash at same index in the sketch and will loose the interpretability.

[1] have implemented a method to maintain the interpretability of the features using the Weight-
Median sketch and maintaining a heap of most discriminating features. This method accurately and
efficiently performs feature selection on real-world, large-scale datasets with billions of dimensions.

We will be leveraging this methodology to maintain the interpretability of features. We propose
using our variants of sketch to maintain weights which would use less space compared to Weight
median sketch built on count sketch.

3 Methodology

Here we are presenting the methods and algorithms which we used for our study.

3.1 Zipfian Distribution and Power Law Distribution

Many real data distributions such as sizes of cities, word frequencies, citations of papers, web page
access frequencies, and file transfer size and duration are often characterized by the Zipfian, Pareto,
or Power-law distributions which only differ by the choice of parameters. The zipfian distribution
with parameter α > 0 is a discrete distribution stating that the kth largest frequency fk has a fre-
quency proportional to k−α. We can see, α = 0 generates a uniform distribution whereas the larger
α the more skewed the distribution gets. Zipfian law is cumulative form of Power law distribu-
tion. Zipfian and Power law distributions are especially interesting with regards to the heavy hitters
problem since this problem looks for frequencies which are significantly larger than the rest of the
data. For increasingly skewed zipfian distributions the elements with such frequencies become more
frequent, since only a few of the overall frequencies account for more of the total frequency.

3.2 Count Min Sketch

The Count Min Sketch (CMS) is a randomized method closely related to bloom filters. The count
min sketch data structure can only be used when ∆ is positive. Count Min Sketch has d random
pairwise independent hash functions hjj ∈ {1, 2,, d} to map the vector’s components to bins w.
hj : {1, 2, ..., p} → {1, 2, 3, ..., w}. Every component i is hashed into bin S(j, hj(i)). The count-
min-sketch supports two operations: UPDATE(item i, increment ∆). The update operation updates
the sketch with any observed increment. For an increment ∆ to an item i, the sketch is updated by
adding ∆ to the cell S(j, hj(i))∀j ∈ {1, 2, ..., d}. The QUERY operation returns the estimate for
component i, the min of all the d different associated counters.

Algorithm 1: Count Min Sketch
v universal hash functions hj
Initialize count-min-sketch matrix S ∈ Rv,w = 0

Update(item i, increment: ∆)
Update component i with update ∆
S(j, hj(i)) = S(j, hj(i)) + ∆ ∀j ∈ {1...d}

Query (item i):
Query Sketch for an estimate for item i
return Min(Sj,hj(i))

for any item i, when we query its value from Count Min Sketch, it will always give an overestimate
of its value as other item also can map to the same position in count min sketch.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Sj [hj(i)] = fi(x) +
∑

y 6=i:hj(y)=hj(i)

f(y)

Where fi(x) is actual value of item i and
∑
y 6=i:hj(y)=hj(i)

f(y) is error in estimating value for item
i . Expected Error:

E[
∑

y 6=i:hj(y)=hj(i)

f(y)] =
∑
y 6=i

Pr(hj(i) = hj(y))f(y)

=⇒
∑
y 6=i

1

w
f(y) ≤ N

w

where N is all items in stream. Using Markov inequality we can say:

f(i) ≤ Sj [hj(i)] ≤ f(i) +
ε ∗N
K

where K is Heavy Hitters Count and ε is error rate. So in this way we can say that count min sketch
can be used to approximate frequency of every item i in a stream up to error εn

k with probability
≥ 1− δ in O(log(1

δ)kε) space and time O(log δ−1) where δ is failure probability.

For frequency estimation of heavy hitters under stream settings, we can use ∆ = 1 in algorithm 1.

3.3 Count Median Sketch (Count Sketch)

The algorithm uses d random hash functions similar to count-min sketch but it also uses d ran-
dom sign functions as well to map the components of vectors randomly to {+1,−1} i.e. si :
{1, 2, ..., n} → {+1,−1}. The count-sketch (CS) also similarly supports two operations, UP-
DATE(item i, update δ) and QUERY(item i). The UPDATE operation updates the sketch with any
observed update. It may be increment as well as decrement. For an update ∆ to an item i, the sketch
is updated by adding sj(i)∆ to the cell S(j, hj(i))∀j ∈ {1, 2, ..., d}. The QUERY operation returns
an estimate for component i, the median of all the d different associated counters.

Algorithm 2: Count Median Sketch
v universal hash functions hj
v random sign functions sj
Initialize count-sketch tensor S ∈ Rv,w = 0

Update(item i, update: ∆)
Update component i with update ∆
S(j, hj(i)) = S(j, hj(i))+sj(i)∆ ∀j ∈ {1...d}

Query(item i):
Query Sketch for an estimate for item i
return Median(Sj,hj(i)sj(i)))

Let us analyze the Count Median Sketch: Let us assume the possible different items coming into the
stream will be M . Let us define an indicator function

Yj =

{
1, if h(j) = h(j∗)

0, otherwise

Approximate value of item j:
f̂j∗ = s(j) ∗ S[h(j)]

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

f̂j∗ = s(j∗)

M∑
j=1

fjs(j)Yj

=⇒ s(j∗)2fjy
∗
j +

∑
j 6=j∗

fjs(j
∗)s(j)Yj

=⇒ fj +
∑
j 6=j∗

fjs(j
∗)s(j)Yj

Since s(j∗)2 = 1 and Yj∗ = 1, By Linearity of Expectation:

E(f̂j∗) = fj∗ +
∑
j 6=j∗

fj E[s(j∗)s(j)Yj]

Since s is pairwise independent and is independent of Yj which is solely function of h, for j 6= j∗,
we have:

E[s(j∗)s(j)Yj] = 0

=⇒ E[f̂j∗] = fj∗

As f̂j∗ is an unbiased estimator of fj∗ , let us compute its variance:

V ar(f̂j∗) = E[f̂j∗ − fj∗]2

=⇒ E[
∑
i 6=j∗

∑
j 6=j∗

fifjs(i)s(j)YiYj]

Since s(j∗)2 = 1

=⇒
∑
i 6=j∗

∑
j 6=j∗

fifj E[s(i)s(j)YiYj]

As for i 6= j, since s is pairwise independent and independent of h, E[s(i)s(j)YiYj] = 0. Therefore
the only terms in the variance that are survive are when i = j.

=⇒ V ar(f̂j∗) =
∑
j 6=j∗

f2j E[Y 2
j]

As E[Y 2
j] = E[Y j] and Yj is indicator function so E[Yj] = Pr(h(j) = h(j∗)) = 1

w . Therefore,

V ar(f̂j∗) =
∑
j 6=j∗

f2j
w

=
||f ||22 − f2j∗

w
=
||f−j∗ ||2

w

By Chebyshev Inequality:

Pr(||f̂j∗ − fj∗ || ≥ ε||f−j∗ ||) ≤
V ar(f̂∗j)

ε2||f−j∗ ||22

The query has a running time proportional to the depth of the sketch. As for the update procedure
of Count-Median Sketch, two invocations of a hash function, a multiplication, and an addition is
required at each row. All these operations are constant and add up to O(d) time. The median of
the d estimates must be found, which can be done in linear O(d) time, yielding a total of O(d) =
O(ln δ−1) running time for the point query overall.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3.4 Comparison of Count Min and Count Sketch

The Count-Median Sketch provides a better guarantee, since it guarantees that v̂i is within an addi-
tive factor of ε||v||2 of the true frequency vi with probability 1 − δ. This guarantee is significantly
stronger in most cases as ||v||2 ≤ ||v||1. The cost of this guarantee is significantly larger, since
the Count-Median Sketch requires O(log(1

δ) kε2) in comparison to count min sketch which takes
O(log(1

δ)kε) space to support updates and queries in the same time as Count-Min Sketch.

If we compare the precision of the two sketches, it is observed that for data with a near uniform
distribution, the Count-Median Sketch provides smaller errors, whereas when the data becomes
more and more skewed, the Count-Min Sketch provides the smallest error. This is not surprising
since the Count-Median Sketch still has a relationship with the L2-norm, which increases when the
data becomes more skewed implying that the error increases as well.

Under equal space constraint, The precision of the Count-Median Sketch is also expected to change
drastically, due to the decrease in space usage. In fact it is expected that the decrease in space implies
that the error guarantee now is bounded according to the L1-norm instead of the L2-norm according
to [7]. So Count-Median Sketch can in fact be shown to provide an error guarantee according to the
L1-norm, by changing the width to be equal to the width of a Count-Min Sketch.

Summing it up, we can say that the Count-Min Sketch and the Count-Median Sketch with width
w = O(ε−1) is indeed comparable, and that comparing the sketches according to space, precision
and running times gives very similar results, where different data distributions determines which
sketch performs the best. The only notable difference is in the running time of the query algorithms
where the Count-Min Sketch in general seems to be faster than the Count-Median Sketch. It is likely
due to calculating the minimum compared to calculating the median is faster and easier operation.
This is where the motivation came for us to come up with a data structure inspired from count min
sketch for accumulation of gradients.

3.5 Complementary Count Min Sketch

Count min sketch doesn’t support reducing frequency or removing an item in a stream of updates.
As if we decrement the frequency the error bound will not hold which states that the frequency
estimated by count min would be equal or would be an overestimate of the true frequency. However,
Count Sketch supports reducing frequency or removing an item and also holds the error bounds
as it gives the estimate as an median. As we discussed in 3.4 that count min sketch is faster in
comparison to count sketch and with equal space bound count sketch and count min sketch both
provides error within L1-norm bound. To support negative updates in count min sketch we proposed
this novel data structure - Complementary Count Min Sketch (CCMS). In Complementary (positive
and negative) Count Min Sketch, we will have two sketches Spos and Sneg which will accumulate
the positive and negative updates respectively. So for UPDATE(item i, update ∆), we will first
check if ∆ is positive or negative. If ∆ is positive then will update it in Spos, the same way we
did in Count Min Sketch’s update method. If ∆ is negative then we will update the absolute value
of ∆ in Sneg . For QUERY(item i), we will query the item in Spos and Sneg and will return the
minjS

pos[j, hj(i)]−minjSneg[j, hj(i)].

Let us do the Mathematical Analysis of Complementary Count Min Sketch: From Count Min Sketch
analysis we know: For Single Count Min Sketch

Sj [hj(i)] = fi(x) +
∑

y 6=i:hj(y)=hj(i)

f(y)

Where fi(x) is actual value of item i and
∑
y 6=i:hj(y)=hj(i)

f(y) is error in estimating value for item
i. Similarly:

Sposj [hj(i)] = fi(x) +
∑

y 6=i:hj(y)=hj(i)

f(y)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Algorithm 3: Complementary Count Min Sketch
v universal hash functions hj
Initialize positive count-min-sketch matrix Spos ∈ Rv,w = 0, negative count-min-sketch matrix
Sneg ∈ Rv,w = 0

Update (item i, update: ∆)
Update component i with update ∆
if ∆ > 0 then

Spos(j, hj(i)) = Spos(j, hj(i)) + ∆ ∀j ∈ {1...d}
else

Sneg(j, hj(i)) = Sneg(j, hj(i)) + abs(∆) ∀j ∈ {1...d}
end

Query (item i):
Query Sketch for an estimate for item i
return Min(Sposj,hj(i)

) - Min(Snegj,hj(i)
)

Where fi(x) is actual value of item i and
∑
y 6=i:hj(y)=hj(i)

f(y) is error in estimating value for item
i.

Snegj [hj(i)] = fi(x) +
∑

y 6=i:hj(y)=hj(i)

f(y)

Where fi(x) is actual value of item i and
∑
y 6=i:hj(y)=hj(i)

f(y) is error in estimating value for item
i from negative items of stream.

For Complementary Count Min Sketch:

E[g(i)] = E[fpos(i) +
∑

y 6=i:hj(y)=hj(i)

fpos(y)]− E[fneg(i) +
∑

y′ 6=i:hj(y′)=hj(i)

fneg(y′)]

Here y and y′ are hash functions for positive and negative sketch. g(x) is true estimate of particular
item.

=⇒ E[fpos(i)− fneg(i)]− E[
∑

y 6=i:hj(y)=hj(i)

fpos(y)−
∑

y′ 6=i:hj(y′)=hj(i)

fneg(y′)]

As
=⇒ E[fpos(i)− fneg(i)] = E[f(i)] = f(i)

So Error from CCMS:

Error = E[
∑

y 6=i:hj(y)=hj(i)

fpos(y)−
∑

y′ 6=i:hj(y′)=hj(i)

fneg(y′)]

Error = I(y = y′).E[
∑

y 6=i:hj(y)=hj(i)

fpos(y)−fneg(y)]+I(y 6= y′).E[
∑

y′ 6=y 6=i:hj(y′)=hj(i)

fpos(y)−fneg(y′)]

=⇒ 1

m2
E[

∑
y 6=i:hj(y)=hj(i)

fpos(y)−fneg(y)]+
1

m(m− 1)
E[

∑
y′ 6=y 6=i:hj(y′)=hj(i)

fpos(y)−fneg(y′)]

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

So upper bound for the error will be:

=⇒ UpperBound =
1

m2
E[

∑
y 6=i:hj(y)=hj(i)

fpos(y)] +
1

m(m− 1)
E[

∑
y 6=y′ 6=i:hj(y)=hj(i)

fpos(y′)]

So lower bound for the error will be:

=⇒ LowerBound =
1

m2
E[

∑
y 6=i:hj(y)=hj(i)

fneg(y)] +
1

m(m− 1)
E[

∑
y 6=y′ 6=i:hj(y)=hj(i)

fneg(y′)]

We observe the error is bounded between error from negative count min sketch to positive count min
sketch. Thus the estimated frequency can be lower as well as greater then true frequency. However,
If there are proportionate amount of negative and positive updates these error terms will cancel out
each other and would be close to the true estimate.

3.5.1 Variants of Complementary Count Min Sketch

Complementary Count Min Sketch with Different Hash Functions:
In the previously proposed complementary count min sketch, we used same hash functions for pos-
itive as well as negative count min sketch meaning positive and negative updates will have same
positions in sketches. Thus, if hash of two particular items are colliding with each other then they
will collide in both the sketches. We tried to analyze if we have different hash functions for positive
and negative count min sketches, would it help us to minimize the error. Algorithm is described here
4.

Algorithm 4: Complementary Count Min Sketch using different Hash Functions
v universal hash functions hposj , hnegj for positive and negative count min sketches
Initialize positive count-min-sketch matrix Spos ∈ Rv,w = 0
Initialize negative count-min-sketch matrix Sneg ∈ Rv,w = 0

Update (item i, update: ∆)
Update component i with update ∆
if ∆ > 0 then

Spos(j, hposj (i)) = Spos(j, hposj (i)) + ∆ ∀j ∈ {1...d}
else

Sneg(j, hnegj (i)) = Sneg(j, hnegj (i)) + abs(∆) ∀j ∈ {1...d}
end

Query (item i):
Query Sketch for an estimate for item i
return Min(Spos

j,hpos
j (i)

) - Min(Sneg
j,hneg

j (i)
)

Complementary Count Min Sketch with Single Hash Function:
We realized that the previous approach is quite similar to having a single count min sketch where in
we use different hash functions for positive and negative updates. This is synonymous to using one
count min sketch where we update the positive one as usual and for the negative we get the hash of
negative number and update at that position. Algorithm is described here 5.

Conservative Complementary Count Min Sketch:
As we studied in our last semester, count min sketch with conservative updates gives more accurate

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Algorithm 5: Complementary Count Min Sketch using Single Count Min Sketch
v universal hash functions hj
Initialize count-min-sketch matrix S ∈ Rv,w = 0

Update (item i, update: ∆)
Update component i with update ∆
if ∆ > 0 then

S(j, hj(i)) = S(j, hj(i)) + ∆ ∀j ∈ {1...d}
else

S(j, hj(−i)) = S(j, hj(−i)) + abs(∆) ∀j ∈ {1...d}
end

Query (item i):
Query Sketch for an estimate for item i
return Min(S(j, hj(i)) - Min(Sj, hj(−i)) ∀j ∈ {1...d}

and lower bounds on error. In standard count min sketch, the update operation updates the sketch
with any observed increment. For an increment ∆ to an item i, the sketch is updated by adding ∆ to
the cell S(j, hj(i))∀j ∈ {1, 2, ..., d}. In this variant, instead of incrementing each counter, we first
compute M = minj∈{1,..d}S(j, hj(i)). Then we only increment S(j, hj(i)) if S(j, hj(i)) = M .
We follow this technique for both positive and negative count min sketch. Query method remains
same to the standard count min sketch method. Algorithm is described here 6.

Algorithm 6: Conservative Complementary Count Min Sketch
v universal hash functions hj
Initialize positive count-min-sketch matrix Spos ∈ Rv,w = 0
Initialize negative count-min-sketch matrix Sneg ∈ Rv,w = 0

Update (item i, update: ∆)
Update component i with update ∆
Compute M = minj∈{1,..d}S(j, hj(i))
if ∆ > 0 then

Spos(j, hj(i)) = Spos(j, hj(i)) + ∆ ∀j ∈ {1...d} s.t S(j, hj(i)) = M
else

Sneg(j, hj(i)) = Sneg(j, hj(i)) + abs(∆) ∀j ∈ {1...d} s.t. S(j, hj(i)) = M
end

Query (item i):
Query Sketch for an estimate for item i
return Min(Sposj,hj(i)

) - Min(Snegj,hj(i)
)

3.6 Feature selection techniques

3.6.1 Feature selection Using Sketches

Consider the feature selection problem in the high dimensional setting where we are given a dataset
(Xi, yi) for i ∈ [n]. Each data point Xi ∈ Rp and label yi ∈ R. We are interested in finding the
k-sparse feature vector β ∈ Rp from below optimization problem which solves our feature selection
task where k non zero elements are the selected features.

min||β||0=k||y −Xβ||2

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Where X = [X1;X2; :::;Xn] and y = [y1; y2; :::; yn] denote the data matrix and label vector and lo
norm ||β||0 denotes the number of non zero entries in ||β||0.
We are interested in solving the feature selection problem for high-dimensional datasets where the
number of features p is so large that a dense vector (or matrix) of size p cannot be stored explicitly in
memory. Sketch data structures allow us to accumulate the gradients updates over several iterations
because of linear aggregation. We will be using the same algorithm as described in [1]. Our novel
contribution is to use above described sketch variants instead of Count Sketch. First, we initialize
the Sketch S and the feature vector βt=0 with zeros entries. The sketch hashes a p-dimensional
vector into O(log2 p) buckets as fig(1). At iteration t, this algorithm selects a random row Xi from
the data matrix X and computes the stochastic gradient update term using the learning rate λ. For
logistic regression, the gradient of softmax function can be defined as gi = λ ∗ (yi − Xiβ

t)Xi.
As the data vector Xi and the corresponding stochastic gradient term are sparse, we only add the
non-zero entries of the stochastic gradient term {gij : ∀j gij > 0} to the Count-Sketch S. After
adding the non-zero entry to the sketch, we perform query operation for those items and insert it
into the heap structure - top k if the absolute value from query operation output is greater than
the minimum absolute value in heap along with feature position. In gist, we are maintaining the
most discriminating features (ones with high absolute weights) in Top-K. This structure is solely
responsible for maintaining the interpretability of the features. After performing this stochastic
gradient update step for all the examples and performing the described operation. Finally, we query
the Top-K values of the sketch as the final output. This is detailed in Algorithm 7

Figure 1: Schematic of Algorithm

Algorithm 7: Feature Selection: Using Sketch
Result: The top-k heavy-hitters from the Sketch
Initialize: β0 = 0, S (Sketch), λ(learning rate)
while not stopping criteria do

Find the gradient update gi = λ(yi −Xiβ
t)TXi

Add the gradient update to the sketch gi → S
Get the top-k heavy hitters from the sketch βt+1 ← S

end

3.6.2 Greedy Thresholding

In the feature selection algorithms, the class of hard thresholding algorithms have the smallest mem-
ory footprint. Hard thresholding algorithms retain only the top-k values and indices of the entire
feature vector using O(k log(p)) memory. An algorithm where, after each gradient update, a hard
threshold is applied to the features. Only the top-k features are kept active, while the rest are set to
zero. This algorithm generates the following iterates for the ith variable in an stochastic gradient
descent (SGD) framework.

βt+1 ← Hk(βt − 2λ(yi −Xiβ
t)TXi)

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

The sparsity of the feature vector Bt, enforced by the hard thresholding operator Hk, alleviates
the need to store a vector of size O(p) in the memory in order to keep track of the changes of
the features over the iterates. As in this algorithm, we only retains the top-k elements of β, the
hard thresholding procedure greedily discards the information of the non top-k coordinates from the
previous iteration. In particular, it clips off coordinates that might add to the support set in later
iterations. This drastically affects the performance of hard thresholding algorithms, especially in
real-world scenarios where by the design matrix X is not random, normalized, or well-conditioned.
In this scenario, the gradient terms corresponding to the true support typically arrive in lagging order
and are prematurely clipped in early iterations by Hk.

3.6.3 Logistic Regression with Heap

In this approach we maintain a heap similar to the the heap as we maintained for feature selection
using sketch technique. After each iteration of SGD, we update the heap in order to maintain the
top-k features with high magnitude where k is user defined. This ensures that after each iteration,
we just have weights for k features.

3.7 Top K Recovery

Our aim for feature selection of high dimensional data set is to find most discriminating features i.e
features which have most impact on the true label. In order to do this, we maintain a heap kind of
data structure which maintains fixed size of the high magnitude feature weights and their indexes.
This structure is updated after each update on count sketch i.e when the weight of any feature is
modified. At the end of training, the Top-K heap is used to recover the K-sparse weight vector. The
key idea of recovery lies in that a suitably high dimensional sparse signal can be inferred from very
few linear observations.

4 Dataset

We have used two datasets in our experiment.

4.1 RCV1

Reuters Corpus Volume I (RCV1) contains over 800,000 manually categorized newswire stories.
This dataset contains the Non-zero values cosine-normalized, log TF-IDF values for each document.
All the features are real and between 0 and 1. RCV1 [8] dataset is categorized into 4 groups to cap-
ture the major subjects of a story. The 4 groups are Economics(ECAT), Corporate/Industrial(CCAT),
Government/Social(GCAT) and Markets(MCAT). This data was processed and converted into binary
classes where in positive class includes CCAT, ECAT and negative class includes GCAT, MCAT. 1

The statistics of these datasets are summarized in table 1.

Dataset Dimension Train Size Test Size
RCV1 47236 20242 677399

Table 1: Dataset Statistics

As the data set has large number of features, data is represented in dictionary format where the key
is the position of feature and value is the feature value.

For simplicity purpose we chose to implement binary classification using logistic loss. Our proposed
methodologies can be easily extended for multiclass classification.

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.htmlrcv1.binary

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

4.2 Synthetic Dataset

To analyze the performance of Complementary Count Min Sketch for feature selection and heavy
hitters, the results of RCV1 dataset were not easy to interpret due its high dimensions and lack
of true model parameters. In order to mitigate this, we came up with the idea of generating a
synthetic dataset where we can play with the number of examples, feature dimensions and sparsity
of features. We also generated the true feature weights and calculated the true labels based on it.
Knowing true model parameters was a major advantage of working with synthetic dataset. This
helped us to analyze the behaviour of sketch and top-k heap at any stage easily. We created dataset
using Gaussian distribution as well as with power law distribution with by inducing sparsity as per
choice.

4.2.1 Synthetic Dataset using Gaussian Distribution

As we saw in section 3.4 that under uniform distribution count sketch has smaller error in estimation
of frequency in comparison to count min sketch. We wanted to verify this for our data structure. We
created the dataset matrix using standard Gaussian distribution. We randomly selected the important
features and generated random weights and based on these data points and feature weight assigned
labels to each example. We experimented with different dataset sparsity level as well as feature
sparsity levels.

4.2.2 Synthetic Dataset using Power Law Distribution

As we saw in section 3.4 for skewed distributions like Power Law and Zipfian, count min sketch
should provide smallest error. To understand the performance of our novel data structure we gener-
ated the synthetic data examples under power law distribution. We used multiple values of α = 2, 3
and selected minimum value of k=1 and maximum value of k= number of features. We experimented
with different dataset sparsity levels and feature sparsity levels to understand the performance of our
data structure in comparison to other sketch variants for heavy hitters as well as feature selection
task.

5 Experiments and Results

5.1 Analyzing Gradient Updates

Complementary Count Min Sketch will give least error when the error in positive and negative count
min sketch negate each other. Since our experiments with RCV1 and KDD dataset performed well
with CCMS data structure, we believed this was due to negation of the sketch errors. So we decided
to analyze the gradient updates of each dimension of the feature vector. We performed comparative
analysis of gradient updates for different approaches of feature selection using all the variants (in-
cluding CCMS, conservative CCMS, CS, logistic regression, and standard logistic regression with
top-k) to understand how gradient updates are being store and how top-k is changing over time.

In figure 5 we present few samples for gradient updates. Analyzing these sample gradient updates,
we observe that feature 13 and feature 29 are behaving completely opposite. Where in feature 13,
number of gradient updates of count sketch are lesser in comparison to standard logistic regression
method, in feature 29 number of updates are more for count sketch. If we analyze feature 25,
gradients fluctuations have higher magnitudes for count sketches in comparison to logistic regression
updates but number of updates in logistic regression are way highers then number of updates in count
sketch. To sum up, we can say we didn’t find any specific pattern in gradient updates to conclude
anything.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Figure 2: Gradient updates for feature 13

Figure 3: Gradient updates for feature 25

Figure 4: Gradient updates for feature 29

Figure 5: In these gradient updates, first column belongs to CCMS, second column belongs to
complementary CCMS, third column belongs to CS, forth column belong to logistic regression and
fifth belongs to logistic regression with heap

5.2 Performance of Datasets for feature selection

We performed experiments using different feature selection techniques for both RCV1 dataset and
synthetic dataset.

RCV1 Dataset follows power law. The results of RCV1 dataset with top K = 8000 are summarised
in the table below:

Num
Hash Fun. Sketch Size

Total
Space

Total
Time
(Sec.)

Accuracy

Logistic
Regression 1 47236 47236 97.65%

Logistic
Regression with

Heap
1 47236 47236 97.64%

CS 3 19000 57000 45.53 95.33%
CCMS 2 14000 56000 34.42 95.36%

Conservative
CCMS 2 14000 56000 44.84 94.98%

Greedy Thresholding 1 47236 47236 81.94%

Table 2: Results for RCV1 Dataset

We have approximately allocated equal space to all the sketches. We observe that accuracy of logistic
regression outperforms all of them. All the sketches nearly give same accuracy. The time taken by
CCMS is relatively less compared to the other sketches which is as expected.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Num
Hash
Func

Sketch
Size

Total
Space Accuracy

Logistic
Regression 1 10000 10000 91.32%

Logistic
Regression with

Heap
1 10000 10000 92.45%

CS 3 2000 6000 78.55%
CCMS 2 1500 6000 74.77%

Conservative
CCMS 2 1500 6000 74.41%

Greedy
Thresholding 1 10000 10000 74.42%

Table 3: Results for Gaussian Synthetic Dataset

Above are the summarised results for synthetic Gaussian dataset with top K = 100. As expected,
the standard logistic regression outperforms as we do not compress any gradients. We observed all
other approaches nearly perform similarly. We haven’t stated number of most important features
recovered as all the methods perform poorly when we consider a Gaussian dataset.

Num
Hash
Func

Sketch
Size

Total
Space Accuracy

Positions
Recovered

Logistic
Regression 1 10000 10000 87.5% 80

Logistic
Regression with

Heap
1 10000 10000 86.35% 80

CS 3 2000 6000 87.80% 80
CCMS 2 1500 6000 87% 80

Conservative
CCMS 2 1500 6000 88.67% 80

Greedy
Thresholding 1 10000 10000 54.74% 80

Table 4: Results for Power Law Synthetic Dataset

From the summarised results for synthetic power law following dataset with top K = 100. We
observed all approaches nearly perform similarly except greedy thresholding. All approaches are
able to require the true important features.

5.3 Comparing Top-K Heap for various sketches

For RCV1 dataset, we were not aware of true parameters of the model and were clueless what should
be right baseline to compare with. So we decided to compare the most important features obtained
from each technique. Here we observed something very strange, the match in most important fea-
tures varied a lot for each technique used. These results made us pivot towards experiments with
synthetic dataset.

Also, we analyzed the magnitude of updates for most impacting features which vary a lot. We
notice the range of weights for CCMS is much wider compared to cs. We can say range of weights
of CCMS is closer to the range given by logistic regression.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 6: Top K Overlap for all feature selection methods over RCV1 Dataset

Figure 7: Maximum and Minimum weights for all feature selection methods over RCV1 Dataset

5.4 Frequency estimation

To estimate frequency we created a synthetic dataset with followed power law distribution with
varying α. The dataset included positive and negative numbers where negative number indicated
deletion of the particular element from the stream. We observed that the error in frequency esti-
mation for frequent hitters using CCMS was decent when the data set was very skewed. Also, we
observe the first proposed CCMS outperforms compared to the CCMS with different hash functions
4 and CCMS using single sketch 5.

alpha
values

CS
loss

CCMS
loss

CCMS
using

different
hash functions

CCMS
using

Single Sketch

2 3.27 12.79 13.87 100.17
3 0.025 0.27 0.20 1.84

Table 5: Mean Square Loss for top 30 items from variants of count sketches

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

6 Conclusion

The analysis of complementary count min sketch does not give a better bound than count sketch
in terms of error. However, they have promising results in terms of time taken compared to count
sketch. From the results we observed under same space constraint count sketch and complementary
count min sketch both give same error bound which is L1-norm of true frequency vector when
dataset is very skewed.

References

[1] Amirali Aghazadeh, Ryan Spring, Daniel LeJeune, Gautam Dasarathy, Anshumali Shrivastava,
and Richard G. Baraniuk. MISSION: ultra large-scale feature selection using count-sketches.
In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 80–88, 2018.

[2] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.
In Proceedings of the 29th International Colloquium on Automata, Languages and Program-
ming, ICALP ’02, pages 693–703, Berlin, Heidelberg, 2002. Springer-Verlag.

[3] Graham Cormode and Marios Hadjieleftheriou. Methods for finding frequent items in data
streams. The VLDB Journal, 19(1):3–20, February 2010.

[4] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature
hashing for large scale multitask learning. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, pages 1113–1120, New York, NY, USA, 2009.
ACM.

[5] A. Maleki. Coherence analysis of iterative thresholding algorithms. In 2009 47th Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton), pages 236–243, 2009.

[6] Kai Sheng Tai, Vatsal Sharan, Peter Bailis, and Gregory Valiant. Sketching linear classifiers
over data streams. In Proceedings of the 2018 International Conference on Management of
Data, SIGMOD ’18, pages 757–772, New York, NY, USA, 2018. ACM.

[7] Morten Houmller Nygaard Jonas Nicolai Hovmand. Estimating frequencies and finding heavy
hitters, 2006.

[8] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. Rcv1: A new benchmark collection
for text categorization research. J. Mach. Learn. Res., 5:361–397, December 2004.

16

	Introduction
	Related Work
	Methodology
	Zipfian Distribution and Power Law Distribution
	Count Min Sketch
	Count Median Sketch (Count Sketch)
	Comparison of Count Min and Count Sketch
	Complementary Count Min Sketch
	Variants of Complementary Count Min Sketch

	Feature selection techniques
	Feature selection Using Sketches
	Greedy Thresholding
	Logistic Regression with Heap

	Top K Recovery

	Dataset
	RCV1
	Synthetic Dataset
	Synthetic Dataset using Gaussian Distribution
	Synthetic Dataset using Power Law Distribution

	Experiments and Results
	Analyzing Gradient Updates
	Performance of Datasets for feature selection
	Comparing Top-K Heap for various sketches
	Frequency estimation

	Conclusion

